

Enhancing Drug Discovery by Fusing Graph and Sequence Encoder Representations

*Abhishek K P *Madhurya R Nair *Sonika Rajesh Pillai *Vyshakh G Nair **Dr. Anuraj Mohan *UG Scholar, **Associate Professor, Department of Computer Science and Engineering, NSS College of Engineering, Palakkad

classes

Problem Statement

- · Drug discovery through wet-lab experimentation is a timeconsuming and expensive process.
- The selection of potential drug candidates requires extensive biological testing in the lab, leading to high attrition rate.
- · Deep learning offers a potential solution to these challenges by leveraging computational methods to expedite the process and reduce resource wastage.

Problem Definition

- · In this approach, molecules are represented either as graphs (where atoms are nodes and chemical bonds are edges) or as sequences (such as SMILES strings representing the chemical structure).
- · The goal is to predict certain properties or characteristics of these molecules, such as their effectiveness as drugs or their toxicity.

Formally, the problem is defined as follows:

- · Given a molecular representation X, which can be either a molecular graph, G or a molecular sequence S, the task is to predict a corresponding property, Y.
- The function f maps the input molecular representation to the output property:

 $f: X \rightarrow Y$

Objectives

- · To employ various preprocessing techniques to ensure the conversion of SMILES (Simplified Molecular Input Line Entry System) representation that is a suitable input for graph and sequence model.
- · To explore multiple graph and sequence models that yields the best learning.
- · To develop fusion-model TraGT, TraGT-R (with reconstruction) that is capable of learning both graph and sequence representations from the SMILES of molecules from the dataset.
- · To conduct comprehensive training and evaluation of the developed fusion model and employ appropriate evaluation metrics to assess the performance of the model.

Methodology	
	Transformer Trans
Input F	Representations
Input representations invol sequence input S. The graph Representation Learner and S	ve molecular graph input, G and SMILES data and sequence data is fed into the Graph Sequence Representation Learner.
ofy0	O=C(NNC(=O)clcccol)clcccol
Craph Transform • transforms graphs into nume edges. • The focus on a node's neighbors information. • This creates a final embedding for node, capturing its features ($d_{c_{i}}^{0} = W_{c_{i}}^{0}h_{i}^{0} + b_{c_{i}}^{0}$) $d_{c_{i}}^{0} = W_{c_{i}}^{0}h_{i}^{0} + b_{c_{i}}^{0}$ $d_{c_{i}}^{0} = W_{c_{i}}^{0}h_{i}^{0} + b_{c_{i}}^{0}$ $d_{c_{i}}^{0} = U_{c_{i}}^{0}h_{i}^{0} + b_{c_{i}}^{0}$ $d_{c_{i}}^{0} = U_{c_{i}}^{0}h_{i}^{0} + d_{c_{i}}^{0}$ $d_{c_{i}}^{0} = U_{c_{i}}^{0}h_{i}^{0} + d_{c_{i}}^{0}$ $d_{c_{i}}^{0} = U_{c_{i}}^{0}h_{i}^{0} + d_{c_{i}}^{0}$ $d_{c_{i}}^{0} = U_{c_{i}}^{0}h_{i}^{0} + d_{c_{i}}^{0}$ $d_{c_{i}}^{0} = U_{c_{i}}^{0}h_{i}^{0} + d_{c_{i}}^{0}$	$h_{a}^{(1)}$ $h_{b}^{(2)}$
Craph Transform • transforms graphs into nume edges. • The focus on a node's neighbors information. • This creates a final embedding for node, capturing its features connections within the graph. $q_{r,j}^{(0)} = W_{r,k}^{(0)}h_{j}^{(0)} + b_{r,q}^{(0)}$ $e_{r,j} = W_{r,k}^{(0)}h_{j}^{(0)} + b_{r,q}^{(0)}$ $e_{r,j} = W_{r,k}^{(0)}h_{j}^{(0)} + b_{r,q}^{(0)}$ $e_{r,j} = W_{r,k}^{(0)}h_{j}^{(0)} + b_{r,q}^{(0)}$ $e_{r,j} = W_{r,k}^{(0)}h_{j}^{(0)} + b_{r,q}^{(0)}$ $e_{r,j}^{(0)} = W_{r,k}^{(0)}h_{j}^{(0)} + b_{r,q}^{(0)}$	\mathbf{f}_{a}

y = fusion(x)

(ICIC3S-2024)", organised by School of Electronics, Indian Institute

of Information Technology Una, Himachal Pradesh.